Construction
It consists of a bi-metallic strip in the form of a long spiral. One end of the spiral is kept fixed, while a light pointer is attached to the other end.
Working
When the temperature rises, the bi-metal strip coil itself into an even tighter spiral due to different expansion rates of the two metals. the pointer moves across the temperature scale and in this way reading is noted.
2. Fire Alarm
Introduction
A fire alarm is used to warn people when there is a fire.
Construction
In a fire alarm, one end of a bi-metal strip is firmly fixed, while the other is free. One terminal of a 6 volt battery is connected to the fixed end of the strip through a 6 volt bulb or bell. The other terminal of the battery is connected with a metallic contact which is just above the free end of the bi-metallic strip.
Working
When a fire starts, heat energy is given off. It raises the temperature of the bi-metallic strip and its free end bends towards the contact. On touching the contact, electric circuit gets completed and the bulb starts to glow or in case of a bell, it rings warning about the fire.
Latent Heat of Fusion
The quantity of heat required to transform 1 kg of ice completely melts into water at 0 degree C is known as Latent Heat of Fusion.
Latent Heat of Vaporization
the quantity of heat required to transform 1 kg of water completely into steam at 100 degree C is known as Latent Heat of Vaporization.
Effect of Pressure on Melting Point (Regelation)
The melting point of those substances, which expand on freezing, gets lowered when pressure over one atmosphere is exerted on them.
Experiment
Take a bare copper wire with weights on its both ends. Place it across a block of ice. The copper wire sinks slowly through the block and weight falls to the floor. Pressure exerted by the copper wire lowers the freezing point of ice and the ice beneath the wire melts. The water flows round the wire and re-freezes on getting above the wire, releasing latent heat energy. This energy is conducted through the copper wire, which helps to melt the ice below the wire. In this way, ice below the wire melts while water above the wire freezes. This process continues until the wire cuts through the ice block.
Effect of Pressure on Boiling Point
If the pressure on the surface of a liquid is increased above the normal atmospheric pressure, its boiling point increases.
Experiment
Fill a round bottom flask to half its capacity. After boiling the water fro a few minutes, remove the burner and place a cork in the flask. Invert the flask and pour some cold water on the bottom of the flask. After some time, water starts to boil again although no more heat has been provided to it. The reason is that, when the water was boiled, it expelled all the air from the flask. When the flask was corked and allowed to cool the steam condensed into water. Since, no fresh air could enter the flask the pressure inside the flask lowered. This decreased the boiling point of water and water started to boil at normal temperature.
Evaporation
The process of change of a liquid into vapour without boiling is called evaporation.
Factors on which Evaporation Depends
Evaporation depends on the following factors:
1. Nature of Liquid: If the boiling point of a liquid is low, then they evaporate much quickly e.g. Alcohol and Ether.
2. Temperature of Liquid: If the surface temperature of a liquid is increased, then rate of evaporation also increases, e.g. ironing of clothes.
3. Surface Area of Liquid: If the surface area of a liquid is increased, then the rate of evaporation increases, e.g. liquids spread over large areas evaporate more quickly.
4. Dryness of Air: If there is more dryness in the air, then the rate of evaporation increases, e.g. in humid weather, clothes take a longer time to dry.
5. Wind speed: If the wind speed is greater, then evaporation rate increases.
6. Air Pressure on the Surface of The Liquid: If the pressure on the surface of the liquid is increased, the rate of evaporation decreases.
Law of Heat Exchange
For an isolated system comprising mixture of hot and cold substances, the heat lost by hot substances is equal to the heat gained by cold substances.
Heat lost by hot body = Heat gained by cold body
Refrigerator
Introduction
A refrigerator is a device that is used to keep fruits, vegetables and other eatables cool.
Post a Comment